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ABSTRACT 

 

In medical imaging such as PET-MR attenuation correction  

and MRI-guided radiation therapy, synthesizing CT images 

from MR images plays an important role in obtaining tissue 

density properties. Recently deep-learning-based image 

synthesis techniques have attracted much attention because 

of their superior ability for image mapping and faster speed 

than traditional models. However, most of the current deep-

learning-based synthesis methods require large scales of 

paired data, which greatly limits their usage as in some 

situation strictly registered image pair is infeasible to obtain. 

Efforts have been made to relax such a restriction, and the 

cycle-consistent adversarial networks (Cycle-GAN) is an 

example to synthesize medical images with unpaired data 

for training. In Cycle-GAN, the cycle consistency loss is 

employed as an indirect structural similarity metric between 

the input and the synthesized images and often leads to 

mismatch of anatomical structures in the synthesized results. 

To overcome this shortcoming, we propose to (1) use the 

mutual information loss to directly enforce the structural 

similarity between the input MR and the synthesized CT 

image and (2) to incorporate the shape consistency 

information to improve the synthesis result. Experimental 

results demonstrate that the proposed method can achieve 

better performance both qualitatively and quantitatively for 

whole-body MR to CT synthesis with unpaired training 

images compared to Cycle-GAN. 

 

Index Terms— image synthesis, training with unpaired 

data, mutual information, adversarial learning, cross 

modality 

 

1. INTRODUCTION 

The advantage of CT imaging is that its voxel intensities or 

Hounsfield values directly reflect tissue densities, which can 

be used for attenuation correction in PET reconstruction and 
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for simulating radiation doses in radiotherapy. With the new 

development of PET-MR and MR-guided radiotherapy 

equipment, CT images are no longer acquired, and 

synthesizing CT from MR images plays an important role in 

these settings. In addition to matching-learning-based 

regression models, recently, deep-learning (DL)-based 

image synthesis techniques have received much attention, 

and their effectiveness in image synthesis has been well 

demonstrated [1, 2]. Compared to traditional methods, DL-

based methods can simulate images more accurately and 

have faster inference speed. However, image synthesis 

across different modalities remains a challenging task due to 

three reasons: first, most of the DL-based image synthesis 

methods require a large number of registered image pairs 

(e.g., the Pix2pix algorithm [1, 3]), which in some situation 

it is infeasible to obtain; second, the image appearance 

between two different image modalities can be significantly 

different. For instance, the bone regions in CT normally 

have high intensity and can be easily distinguished from 

other surrounding soft tissues, however the bone regions in 

MR normally have much lower contrast compared to the 

surrounding soft tissues [1, 2, 4];  third, the field of view 

(FOV) between two different modalities can be different, 

and some voxels in one modality might not have 

correspondences in the other modality. 

Efforts have been made to resolve the above challenges. 

For instance, the cycle-consistent adversarial networks 

(Cycle-GAN) [5] is one of the state-of-the-art image 

synthesis methods, which does not require the existence of 

registered images of two image modalities (i.e., unpaired 

image synthesis). However, the cycle consistency loss or 

Cycle-GAN loss is an indirect constraint to enforce the 

structural similarity between the source and synthesized 

image. Specifically, it only requires that the backward 

transformed image is similar to the original source image, 

and there is no explicit constraint enforced on the forward 

transformed image.  

In this paper, we propose a new method to resolve the 

above challenges. First, a novel mutual information (MI) 

loss is proposed to directly enforce the structural similarity 

between the input and synthesized images, which not only 
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improves the representation capability of the network but 

also boosts the structural consistency between them. Second, 

we employ a shape consistency (SC) constraint as the 

second layer of information to further improve the synthesis 

quality. The proposed method is evaluated on the whole-

body MR to CT synthesis problem for automatic PET-MR 

attenuation correction. Experimental results demonstrate 

that the proposed method can achieve better MR to CT 

synthesis results both qualitatively and quantitatively 

compared with Cycle-GAN.  

 

2. METHOD 

 

The MR to CT synthesis problem for automatic PET-MR 

attenuation correction is challenging for learning-based 

techniques because although the MR and CT image pairs of 

the same patient can be obtained, the patient normally has 

different articulated local motions at different anatomies. 

Therefore, it is very hard to perfectly register the MR and 

CT images even for the same patient (i.e., the unpaired 

image synthesis problem). Cycle-GAN [5] is one of the 

state-of-the-art unpaired image synthesis algorithms, and its 

principle is shown in Fig. 1(a).  

 

Fig. 1. Schematic illustration of: (a) the conventional Cycle-

GAN algorithm, and (b) the forward and backward 

synthesis step of the proposed method with MI and SC as 

the direct structural similarity constraint. 

It uses a forward network G to simulate CT from MR, 

and then uses a backward network F to recover the input. 

However, Cycle-GAN enforces the structural similarity 

between the MR and synthesized CT image in an indirect 

manner through the cycle consistency loss, which may lead 

to inferior synthesis results. We will analyze this in detail in 

Section 2.1 and introduce the proposed MI loss during 

learning to directly enforce the structural similarity 

constraint in Section 2.2 and the shape consistency 

constraint to further improve the synthesis results in Section 

2.3. 

 

2.1 Cycle consistency loss  

The cycle consistency loss is defined by the summation of 

the similarity between the input MR image IMR and the 

backward transformed image F(G(IMR)) and the similarity 

between the input CT image ICT and the backward 

transformed image F(G(ICT)) as, 

, 

thus, the main drawback is that it does not directly enforce 

the structural similarity between the MR and simulated CT 

images. Specifically, it is possible that the backward 

transformed F(G(IMR)) is similar to the original input IMR, 

but G(IMR) appeared to have strange shapes (see Fig. 2(c)). 

 

Fig. 2. Synthesized results using the Cycle-GAN loss and 

MI loss. (a) original MR image; (b) backward synthesized 

MR; (c) synthesized results using Cycle-GAN loss; and (d) 

synthesized CT with Cycle-GAN loss and MI loss. 

 
2.2. Explicit structural similarity constraint with mutual 

information 

To solve the problem, we propose to explicitly enforce the 

structural constraint between the input MR image IMR and 

its synthesized result G(IMR). The main challenge is that 

during the training stage, we do not have the ground truth 

G(IMR) to compare under the unpaired setting. We propose 

to use the MI to enforce this constraint: a good synthesis 

result should be the CT image of the same patient, which is 



perfectly aligned with its corresponding input MR image. 

Thus, MI, one of the most commonly used cross-modality 

image similarity metrics, is suitable to enforce this 

constraint between G(IMR) and IMR, and vice versa for F(ICT) 

and ICT. The schematic illustration of this idea is shown in 

Fig. 1 (b). The MI loss is defined as, 

,  

where p(x) and p(y) denote the distribution of IMR and G(IMR) 

respectively, and p(x,y) donates the joint distribution of IMR 

and G(IMR) . 

The advantage of using the MI loss is illustrated in Fig. 

2(d) compared to the result of using the conventional Cycle-

GAN loss in Fig. 2(c). It can be observed that the resulting 

image G(IMR) is structurally more consistent compared to 

the original input MR image. 

 

2.3. Shape consistency loss  

The MI loss introduced in Section 2.2 explicitly enforces 

the structural constraint between the MR and synthesized 

CT images. However, it can also be observed that the skin 

surface and overall shape of the synthesized CT image are 

still not well aligned with the original image. Here, we 

propose a SC loss as the second layer of information used 

during the training process to further improve the synthesis 

result. Specifically, we extract shape information from the 

input MR image and the synthesized CT image and enforce 

a SC loss between them. The schematic illustration is given 

in Fig. 3.  

 

Fig. 3. Schematic illustration of using the SC loss, where 

the synthesized CT of the generator G will be input into the 

Shape Extractor network to output shape segmentation. The 

shape of MR and synthesized CT will be input to compute 

L1 loss. The images on the right side show overlaying 

masks on MR and synthesized CT. 

As shown in Fig. 3, we first annotate the skin surface 

and body region in both the MR and CT images of each 

patient in the training data and train a 2D U-Net [6], which 

extracts the skin surface and body region from the CT 

image with the training data. Then, during the training 

process, the shapes from the synthesized CT images are 

extracted by the trained CNN and compared with the ground 

truth annotation in the original MR image by L1 loss. 

Therefore, the forward network generator G not only learns 

to fool the discriminator but also considers the SC loss. 

Finally, we adopt the Resnet [7] as the generator’s 

network architecture with 9 residual blocks. For the 

discriminator, we adopt the Patch-GAN [3] network, which 

is able to classify whether a local patch is real or fake and 

has fewer parameter to train compared to conventional 

convolutional neural networks. The final loss for the 

forward generator is: 

. 

 

3. EXPERIMENTAL RESULTS 

 

Fifty patients with Dixon MR sequence and CT scans are 

used in this study. The MR and CT images of each patient 

are whole-body scans obtained at different time points and 

with different motions and FOVs. The Dixon sequence 

contains the water, fat, in-phase and out-phase channels MR 

images with resolution 0.91 mm × 0.91 mm × 2.00 mm, and 

the original CT images have resolution 0.98 mm × 0.98 mm 

× 1.00 mm. The MR image size is 384×384×476. The CT 

image size is 512×512×938. The in-phase channel is used to 

synthesize the CT image. Ten-fold cross validation strategy 

is used. The Cycle-GAN is trained using Adam for 30 

epochs at fixed learning rate of 0.0002 with momentum of 

0.5.  

 

3.1 Data preprocessing 

All MR and CT images are resampled to have the same 

resolution of 1 mm × 1 mm × 1 mm. MR and CT images are 

normalized from [0,1000] and [-1100,2100] to [0,1], 

respectively. Then, we perform rigid registration between 

the MR and CT images to remove the global motion of 

whole body. Finally, 2D axial slices are extracted from 3D 

MR and CT images, and totally 40 subjects including 38080 

slices of MR and 37520 slices of CT are selected to form 

the training set, and the rest 10 subjects including 9520 

slices of MR and 9380 slices of CT are for testing. 

 

3.2 Qualitative Evaluation 

We first evaluate the proposed method in a qualitative 

manner. Fig. 4 shows typical synthesized results using 

different approaches: the conventional Cycle-GAN, the 

proposed method with MI loss only, and the proposed 

method with both MI and the SC loss constraints.  
It can be observed from Fig. 4 that using the 

conventional Cycle-GAN, poor synthesized results are 

obtained. For instance, the soft tissues are deformed in an 

unrealistic manner, and some parts of the bones are 

disappeared in the synthesized results. The main reason is 

that the cycle consistency loss only enforces weak and 

implicit structural similarity constraint between the input 

MR and synthesized CT images, and this limitation becomes 



more obvious for the whole-body scans as there are more 

anatomical variations in those scans. 

By using MI to explicitly enforce the structural 

similarity constraint between the source MR and 

synthesized CT images, the synthesized results are much 

better than using Cycle-GAN. For example, the missing 

bone regions are restored, and most of the soft tissues are 

aligned with the source MR images. Therefore, the 

effectiveness of the MI-based explicit structural similarity 

constraint is reflected. 

It can also be observed from Fig. 4 that by adding the 

SC loss together with MI, the skin surface and overall shape 

of the synthesized results are more similar to the source MR 

images compared to using MI alone, and the small 

unrealistic soft tissue deformation existed in the results 

using MI alone is also corrected.  

 

3.3 Quantitative Evaluation 

The mean absolute error (MAE) and peak-signal-to-noise 

ratio (PSNR) metrics are used to quantitatively evaluate the 

methods.  

Table 1. Mean absolute error (MAE) and peak-signal-to-

noise ratio (PSNR) for different anatomies. 

Anatomies  
Pelvic 

bones 
Lungs Spine 

Femur 

bones 
Average 

MAE 

Cycle-

GAN  
107.03 108.53 109.4 104.03 107.25 

MI 93.36 96.89 98.99 90.85 95.02 

MI+SC 78.34 80.24 84.00 76.30 79.72 

PSNR 

Cycle-

GAN 
43.22 43.16 43.13 43.34 43.21 

MI 43.82 43.65 43.56 43.93 43.74 

MI+SC 44.69 44.47 44.27 44.69 44.50  

 

Notice that MAE and PSNR requires that MR and CT 

images are registered. However, since the MR and CT 

images are obtained at different time-points with different 

local anatomical motions and FOVs, it is difficult to 

perfectly register the MR and CT images. Therefore, we 

performed adaptive registration on four different anatomical 

regions between the MR and CT images: Pelvic bones, 

Lungs, Spine and Femur bones. Specifically, we manually 

drew a binary mask for each anatomical region and 

performed registration for regions only within the mask. For 

each region, we first performed rigid registration and then 

performed deformable registration [8]. Table 1 shows the 

quantitative evaluation results. It can be observed that by 

using the MI loss (i.e., “MI” in Table 1) alone, we can 

already obtain better synthesis results compared to Cycle-

GAN [6]. By using MI loss and SC loss, the result can be 

further improved.  

 

4. CONCLUSION 

 

We proposed an adversarial learning method for robust 

whole-body MR to CT image synthesis with unpaired data 

training. There are two main contributions of our method. 

First, we directly enforce the structural similarity constraint 

by using the MI loss, which is shown to be more robust 

compared to the cycle consistency loss. Second, the SC loss 

is used during training to provide a second layer of 

information to improve the robustness of the synthesis 

process. Our method has been evaluated both qualitatively 

and quantitatively and compared with the Cycle-GAN 

image synthesis method. Experimental results showed that 

our method consistently achieved better synthesis results for 

synthesizing CT from MR images.   
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Fig. 4. Performance of different loss functions. It can be seen that MI and SC loss generated realistic CT images with 

similar shapes of the input MR. Red arrows indicate significant improved regions. 


